Skip to main content
King Abdullah University of Science and Technology
Applied Mathematics and Computational Sciences
AMCS
Applied Mathematics and Computational Sciences
  • Study
    • Prospective Students
    • Current Students
  • Research
    • Research Areas
    • Research Groups
  • People
    • All People
    • Faculty
    • Affiliate Faculty
    • Instructional Faculty
    • Research Scientists
    • Research Staff
    • Postdoctoral Fellows
    • Administrative Staff
    • Alumni
    • Students
  • News
  • Events
  • SIAM Student Chapter
  • CEMSE Division
  • About
  • Apply

polar decomposition

Dalal Sukkari

Ph.D., Applied Mathematics and Computational Sciences

polar decomposition svd dense linear algebra High Performance Computing symmetric eigenvalue problem

Research interests and present research project. Dalal's research centers on a new high performance implementation of the QR-based Dynamically Weighted Halley iterations (QDWH) to compute the polar decomposition and its application to the SVD (QDWH-SVD). She has introduced a high performance QDWH-SVD implementation on multicore architecture enhanced with multiple GPUs, and on distributed memory based on the state-of-the-art vendor-optimized numerical library ScaLAPACK, and has presented the first asynchronous, task-based formulation of the polar decomposition QDWH and its corresponding

Applied Mathematics and Computational Sciences (AMCS)

Footer

  • A-Z Directory
    • All Content
    • Browse Related Sites
  • Site Management
    • Log in

© 2024 King Abdullah University of Science and Technology. All rights reserved. Privacy Notice